Self-averaging scaling limits of two-frequency Wigner distribution for random paraxial waves

نویسنده

  • Albert C Fannjiang
چکیده

Two-frequency Wigner distribution is introduced to capture the asymptotic behaviour of the space–frequency correlation of paraxial waves in the radiative transfer limits. The scaling limits give rises to deterministic transport-like equations. Depending on the ratio of the wavelength to the correlation length the limiting equation is either a Boltzmann-like integral equation or a Fokker–Planck-like differential equation in the phase space. The solutions to these equations have a probabilistic representation which can be simulated by Monte Carlo method. When the medium fluctuates more rapidly in the longitudinal direction, the corresponding Fokker–Planck-like equation can be solved exactly. PACS numbers: 05.10.Ln, 42.25.Dd

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-averaging Scaling Limits of Two-frequency Wigner Distribution for Random Parabolic Waves

The present paper establishes the self-averaging, radiative transfer limit for the twofrequency Wigner distribution for random classical waves in the paraxial approximation. Depending on the ratio of the wavelength to the correlation length the limiting equation is either a Boltzmannlike integral equation or a Fokker-Planck-like differential equation in the phase space. When the longitudinal fl...

متن کامل

Self-averaging in Scaling Limits for Random High-frequency Parabolic Waves

We consider several types of scaling limits for the Wigner equation of the parabolic waves in random media, the limiting cases of which include the radiative transfer limit, the diffusion limit and the white-noise limit. We show under fairly general assumptions on the random refractive index field that any significant amount of spatial diversity (thus excluding the white-noise limit) leads to s...

متن کامل

Self-averaged Scaling Limits for Random Parabolic Waves

We consider several types of scaling limits for the Wigner-Moyal equation of the parabolic waves in random media, the limiting cases of which include the radiative transfer limit, the diffusion limit and the white-noise limit. We show under fairly general assumptions on the random refractive index field that sufficient amount of medium diversity (thus excluding the white-noise limit) leads to s...

متن کامل

Self-Averaging Scaling Limits for Random Parabolic Waves

We consider several types of scaling limits for the Wigner-Moyal equation of the parabolic waves in random media, the limiting cases of which include the standard radiative transfer limit, the geometrical-optics limit and the white-noise limit. We show under fairly general assumptions on the random refractive index field that sufficient amount of medium diversity (thus excluding the white-noise...

متن کامل

Radiative Transfer Limits of Two-frequency Wigner Distribution for Random Parabolic Waves

The present note establishes the self-averaging, radiative transfer limit for the twofrequency Wigner distribution for classical waves in random media. Depending on the ratio of the wavelength to the correlation length the limiting equation is either a Boltzmann-like integral equation or a Fokker-Planck-like differential equation in the phase space. The limiting equation is used to estimate thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007